| Unsupervised Learning
Discovering clusters
Discovering latent factors
Discovering graph structures ...
Finding the representative topic words from text data
Finding the latent image from facial data ...
Clustering Problems:
Latent variable of classes
Optimal assignment to the latent classes
뭔가 latent 한 vector 를 공유하고 있는 것들의 묶음이구나 ...
| K-Means Algorithm
잠재적인 내부 동력이 K 개 정도 있겠구나!
- Setup K number of centroids (or prototypes)
- and cluster data points by the distance from the points to the nearest centroid
Formally,
Minimize $J$ by optimizing
$$ J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \left\| x_n - \mu_{k} \right\|^2 $$
$ r_{nk} $ : the assignment of data points to clusters (클러스터 j 에 속하면 1 아니면 0)
$ \mu_{k} $ : the location of centroids
위 둘을 변형시켜가며 $ J $ 를 최소화하는 과정
두 파라미터의 최적값을 찾기 위해서는 ... Iterative optimization !
| Expectation and Maximization
Expectation 과 Maximization 을 번갈아가며 수행 !
Expectation
- Expectation of the log-likelihood given the parameters
- Assign the data points to the nearest centroid ($ r_{nk} $)
Maximization
- Maximization of the parameters with respect to the log-likelihood
- Update the centroid positions given the assignments ($\mu_{k}$)
$ r_{nk} $
- $ r_{nk}=\left\{ 0, 1\right\} $
- Discrete variable
- Logical choice: the nearest centroid $ \mu_{k} $ for a data point of $ x_{n} $
$ \mu_{k} $
$$
\begin{align*}
\frac{dJ}{d\mu_{k}}&=\frac{d}{d\mu_{k}}\sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \left\| x_n - \mu_{k} \right\|^2 \\
&= \frac{d}{d\mu_{k}} \sum_{n=1}^{N}r_{nk}\left\| x_n - \mu_{k} \right\| ^2 \\
&= \sum_{n=1}^{N} \left\{ -2r_{nk}(x_n - \mu_{k}) \right\} \\
&= -2(-\sum_{n=1}^{N} r_{nk}\mu_{k} + \sum_{n=1}^{N} r_{nk}x_{n}) \\
&= 0 \\
\end{align*}
$$
$ \therefore \mu_{k} = \frac{\sum_{n=1}^{N} r_{nk}x_n }{\sum_{n=1}^{N} r_{nk}}$ ( Mean value of the assigned data )
| Properties of K-Means Algorithm
# of clusters in uncertain
Initial location of centroids
- Some initial locations might not result in the reasonable results
Limitation of distance metrics
- Euclidean distance is very limited knowledge of information
Hard clustering
- Hard assignment of data points to clusters (0 or 1)
Reference
문일철 교수님 강의
https://www.youtube.com/watch?v=mnUcZbT5E28&list=PLbhbGI_ppZISMV4tAWHlytBqNq1-lb8bz&index=48
https://www.youtube.com/watch?v=mnUcZbT5E28&list=PLbhbGI_ppZISMV4tAWHlytBqNq1-lb8bz&index=49
'Study > Lecture - Basic' 카테고리의 다른 글
W8.L5-7. Gaussian Mixture Model - G.M.M (0) | 2023.06.06 |
---|---|
W8.L3-4. Gaussian Mixture Model - Multinomial Distribution (0) | 2023.06.06 |
W7.L8-9. Bayesian Network - Potential Function and Clique Graph (0) | 2023.06.05 |
W7.L6-7. Bayesian Network - Inference Question on Bayesian Networks (0) | 2023.06.05 |
W7.L5. Bayesian Network - Factorization of Bayesian Networks (0) | 2023.06.05 |