W7.L1-2. Bayesian Network - Probability Concepts
| Introduction
Graphical model: 확률 변수 간의 관계를 표현
Conditional probability
$$ P(\textup{H}=\textup{True} \mid \textup{F}=\textup{True}) = \frac{P(\textup{H}=\textup{True}, \textup{F}=\textup{True})}{P(\textup{F}=\textup{True})} $$
"우리가 가지고 있는 어떠한 정보" 를 기반으로 "앞으로 일어날 일을 예측" 하는 것에 관심이 많음
| Law of Total Probability
Law of total probability: "summing out", "marginalization"
$$P(a) = \sum_{b} P(a, b) = \sum_{b} P(a \mid b) \cdot P(b) $$
$P(a) = \sum_{b} P(a, b) = P(a, b=\textup{True}) + P(a, b=\textup{False})$
Given a joint distribution $P(a, b, c, d)$
We can obtain any "marginal probability" (e.g. $P(b)$) by summing out the other variables
$P(b) = \sum_{a} \sum_{c} \sum_{d} P(a, b, c, d) $
Given a joint distribution $P(a, b, c, d)$
We can obtain any "conditional probability" of interest
$P(c \mid b) = \sum_{a} \sum_{d} P(a, c, d \mid b) = \frac{1}{P(b)} \sum_{a} \sum_{d} P(a, c, d, b) $
where $\frac{1}{P(b)}$ is just a normalization constant
Joint distribution contains the information we need to compute any probability of interest
Joint (Ex. $P(a, b)$) 를 알면 individual probability (Ex. $P(a)$ or $P(b)$) 도 알 수 있다.
그리고 Joint 를 알면 individual probability 를 알 수 있으니, Conditional probability 또한 알 수 있다.
(하지만 Joint probability 는 parameter 수가 기하급수적으로 많이 필요하다... $P(a, b, c, d)$ ... $2^4$)
| Chain Rule (Factorization)
By definition of joint probability
$$ P(a,\ b,\ c,\ ...\ ,\ z) = P(a\mid b,\ c,\ ...\ ,\ z)\cdot P(b,\ c,\ ...\ ,\ z) $$
$$ P(a,\ b,\ c,\ ...\ ,\ z) = P(a\mid b,\ c,\ ...\ ,\ z)\cdot P(b \mid c,\ ...\,\ z)\cdot P(c \mid \ ...\ ,\ z) \ ...\ P(z) $$
| Independence
Variables A and B are independent if
$$ P(A \mid B) = P(A) $$
$$ P(A, B) = P(A) \cdot P(B) $$
$$ P(B \mid A) = P(B) $$
Example. "n" coin flips
$$ P(C_{1}, ... , C_{n}) = \prod_{i=1}^{n}P(C_{i}) $$
Marginal independent
A and B is marginally independent!
$$ P(A \mid B) = P(A) $$
Conditional independent
A and B is conditionally independent! (Given C)
C ... Commander
$$ P (A \mid C) = P(A \mid B, \ C) $$
Reference
문일철 교수님 강의
https://www.youtube.com/watch?v=mnUcZbT5E28&list=PLbhbGI_ppZISMV4tAWHlytBqNq1-lb8bz&index=40