본문 바로가기

Study/Lecture - Basic

W5.L1-9. Support Vector Machine

| Decision Boundary without Probability

 

앞에서 살펴봤던 것과는 달리,

확률 개념을 다 빼고. Decision Boundary 를 한 번 생각해보자.

Decision boundary line

$w \cdot x + b = 0$

 

Positive case

$w \cdot x + b > 0$

 

Negative case

$w \cdot x + b < 0$

 

Confidence level

$(w \cdot x_i + b) y_i$  ... 항상 양수 ... 이걸 최대한 높이는 것이 목적

(Labeling with pos. of "+1" and neg. of "-1" )

 

Margin

Perpendicular distance from the closest point to the decision boundary

 

 

 

 

| Margin Distance

Optimization Problem

 

$$ max_{w,b}\ 2r=\frac{a}{\left \| w \right \|} \ \  \ s.t. \ \ (wx_j+b)y_j\  \geqslant a, \ \forall j $$

Optimization Problem (Normalized with $a$)

 

$$ min_{w,b}\ \left \| w \right \| \ \  \ s.t. \ \ (wx_j+b)y_j\  \geqslant 1, \ \forall j $$

Quadratic Optimization ... $ \left \| w \right \| = \sqrt{w_1^2+w_2^2} $

 

→ Quadratic Programming 과 같은 방법으로 최적화 수행!

 

 

 

 

| SVM with Hard Margin

 

Hard margin: No error cases are allowed

Soft margen: Some error cases are allowed

1. Linear line 유지하고, 일부 Error 는 허용 (Soft margin)

2. Kernel trick 적용, 어떠한 Error 도 허용 X (Hard margin)

 

 

 

Option 1

Admit there will be an error 

Represent the error in our problem formulation (peneralization)

Try to reduce the error as well

 

Option 2

Make decision boundary more complex

Go to non-linear line

 

 

 

| Error handling in SVM

0 - 1 Loss

$ min_{w,b}\ \left \| w \right \| + C \cdot Error\ Count $
$ s.t. \ \ (wx_j+b)y_j\  \geqslant 1, \ \forall j $

 

 

Hinge Loss

$ min_{w,b}\ \left \| w \right \| + C \cdot \sum_{j} \xi _j $
$ s.t. \ \ (wx_j+b)y_j\  \geqslant 1-\xi_j, \ \forall j $
$ \xi_j \geqslant 0,\ \forall j $

 

 

다 좋은데 C 라는 추가 변수가 발생한다는 문제 발생

 

 

 

| Others

아래의 강의는 훑어보고 넘어가겠습니다. 

Lecture 5 Soft Margin with SVM
Lecture 6 Rethinking of SVM
Lecture 7 Primal, Dual with KKT Condition
Lecture 8 Kernel
Lecture 9 SVM with Kernel

 

... Constrained optimization

... Dual problem with KKT conditions

... Mapping function and Kernel function

 

 

 

 

Reference
문일철 교수님 강의

https://www.youtube.com/watch?v=oNTXMgqCv6E&list=PLbhbGI_ppZISMV4tAWHlytBqNq1-lb8bz&index=23

https://www.youtube.com/watch?v=oNTXMgqCv6E&list=PLbhbGI_ppZISMV4tAWHlytBqNq1-lb8bz&index=24

https://www.youtube.com/watch?v=oNTXMgqCv6E&list=PLbhbGI_ppZISMV4tAWHlytBqNq1-lb8bz&index=25

https://www.youtube.com/watch?v=oNTXMgqCv6E&list=PLbhbGI_ppZISMV4tAWHlytBqNq1-lb8bz&index=26

https://www.youtube.com/watch?v=oNTXMgqCv6E&list=PLbhbGI_ppZISMV4tAWHlytBqNq1-lb8bz&index=27

https://www.youtube.com/watch?v=oNTXMgqCv6E&list=PLbhbGI_ppZISMV4tAWHlytBqNq1-lb8bz&index=28

https://www.youtube.com/watch?v=oNTXMgqCv6E&list=PLbhbGI_ppZISMV4tAWHlytBqNq1-lb8bz&index=29

https://www.youtube.com/watch?v=oNTXMgqCv6E&list=PLbhbGI_ppZISMV4tAWHlytBqNq1-lb8bz&index=30

https://www.youtube.com/watch?v=oNTXMgqCv6E&list=PLbhbGI_ppZISMV4tAWHlytBqNq1-lb8bz&index=31